Single-machine scheduling of multi-operation jobs without missing operations to minimize the total completion time
T.C.E. Cheng,
C.T. Ng and
J.J. Yuan
European Journal of Operational Research, 2008, vol. 191, issue 2, 320-331
Abstract:
We consider the problem of scheduling multi-operation jobs on a singe machine to minimize the total completion time. Each job consists of several operations that belong to different families. In a schedule each family of job operations may be processed as batches with each batch incurring a set-up time. A job is completed when all of its operations have been processed. We first show that the problem is strongly NP-hard even when the set-up times are common and each operation is not missing. When the operations have identical processing times and either the maximum set-up time is sufficiently small or the minimum set-up time is sufficiently large, the problem can be solved in polynomial time. We then consider the problem under the job-batch restriction in which the operations of each batch is partitioned into operation batches according to a partition of the jobs. We show that this case of the problem can be solved in polynomial time under a certain condition.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(07)00896-X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:191:y:2008:i:2:p:320-331
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().