A discrete particle swarm optimization for lot-streaming flowshop scheduling problem
Chao-Tang Tseng and
Ching-Jong Liao
European Journal of Operational Research, 2008, vol. 191, issue 2, 360-373
Abstract:
We consider an n-job, m-machine lot-streaming problem in a flowshop with equal-size sublots where the objective is to minimize the total weighted earliness and tardiness. To solve this problem, we first propose a so-called net benefit of movement (NBM) algorithm, which is much more efficient than the existing linear programming model for obtaining the optimal starting and completion times of sublots for a given job sequence. A new discrete particle swarm optimization (DPSO) algorithm incorporating the NBM algorithm is then developed to search for the best sequence. The new DPSO improves the existing DPSO by introducing an inheritance scheme, inspired by a genetic algorithm, into particles construction. To verify the proposed DPSO algorithm, comparisons with the existing DPSO algorithm and a hybrid genetic algorithm (HGA) are made. Computational results show that the proposed DPSO algorithm with a two-point inheritance scheme is very competitive for the lot-streaming flowshop scheduling problem.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(07)00904-6
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:191:y:2008:i:2:p:360-373
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().