On the effectiveness of scenario generation techniques in single-period portfolio optimization
Gianfranco Guastaroba,
Renata Mansini and
M. Grazia Speranza
European Journal of Operational Research, 2009, vol. 192, issue 2, 500-511
Abstract:
In single-period portfolio selection problems the expected value of both the risk measure and the portfolio return have to be estimated. Historical data realizations, used as equally probable scenarios, are frequently used to this aim. Several other parametric and non-parametric methods can be applied. When dealing with scenario generation techniques practitioners are mainly concerned on how reliable and effective such methods are when embedded into portfolio selection models. In this paper we survey different techniques to generate scenarios for the rates of return. We also compare the techniques by providing in-sample and out-of-sample analysis of the portfolios obtained by using these techniques to generate the rates of return. Evidence on the computational burden required by the different techniques is also provided. As reference model we use the Worst Conditional Expectation model with transaction costs. Extensive computational results based on different historical data sets from London Stock Exchange Market (FTSE) are presented and some interesting financial conclusions are drawn.
Keywords: Risk; management; Conditional; value; at; risk; Portfolio; optimization; Scenario; generation; Mixed; integer; linear; programming (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (29)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(07)00990-3
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:192:y:2009:i:2:p:500-511
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().