A pseudo-polynomial heuristic for path-constrained discrete-time Markovian-target search
Sung-Pil Hong,
Sung-Jin Cho and
Myoung-Ju Park
European Journal of Operational Research, 2009, vol. 193, issue 2, 351-364
Abstract:
We propose a new heuristic for the single-searcher path-constrained discrete-time Markovian-target search. The algorithm minimizes an approximate, instead of exact, nondetection probability computed from the conditional probability that reflects the search history over the time windows of a fixed length, l. Having a pseudo-polynomial complexity, it can solve, in reasonable time, the instances an order of magnitude larger than those solved in the previous studies. By an asymptotic analysis relying on the fast-mixing Markov chain, we show that the relative error of the approximation exponentially diminishes as l increases and the experimental results confirm the analysis. The experiment also reveals a correlation very close to 1 between the approximate and exact nondetection probability of a search path. This means that the heuristic produces near-optimal search paths.
Keywords: Search; theory; Heuristics; Markov; processes; Network; flows (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(07)01076-4
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:193:y:2009:i:2:p:351-364
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().