EconPapers    
Economics at your fingertips  
 

A scheduling problem with job values given as a power function of their completion times

Adam Janiak, Tomasz Krysiak, Costas P. Pappis and Theodore G. Voutsinas

European Journal of Operational Research, 2009, vol. 193, issue 3, 836-848

Abstract: This paper deals with a problem of scheduling jobs on the identical parallel machines, where job values are given as a power function of the job completion times. Minimization of the total loss of job values is considered as a criterion. We establish the computational complexity of the problem - strong NP-hardness of its general version and NP-hardness of its single machine case. Moreover, we solve some special cases of the problem in polynomial time. Finally, we construct and experimentally test branch and bound algorithm (along with some elimination properties improving its efficiency) and several heuristic algorithms for the general case of the problem.

Keywords: Computational; complexity; Job; value; Branch; and; bound; Heuristic; Experimental; analysis (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(07)01084-3
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:193:y:2009:i:3:p:836-848

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:193:y:2009:i:3:p:836-848