Lagrangean relaxation based heuristics for lot sizing with setup times
Haldun Süral,
Meltem Denizel and
Luk N. Van Wassenhove
European Journal of Operational Research, 2009, vol. 194, issue 1, 51-63
Abstract:
We consider a lot sizing problem with setup times where the objective is to minimize the total inventory carrying cost only. The demand is dynamic over time and there is a single resource of limited capacity. We show that the approaches implemented in the literature for more general versions of the problem do not perform well in this case. We examine the Lagrangean relaxation (LR) of demand constraints in a strong reformulation of the problem. We then design a primal heuristic to generate upper bounds and combine it with the LR problem within a subgradient optimization procedure. We also develop a simple branch and bound heuristic to solve the problem. Computational results on test problems taken from the literature show that our relaxation procedure produces consistently better solutions than the previously developed heuristics in the literature.
Keywords: Inventory; Setup; time; Reformulation; Lagrangean; relaxation; Heuristic (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(07)01149-6
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:194:y:2009:i:1:p:51-63
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().