Geometric conditions for Kuhn-Tucker sufficiency of global optimality in mathematical programming
V. Jeyakumar and
S. Srisatkunarajah
European Journal of Operational Research, 2009, vol. 194, issue 2, 363-367
Abstract:
We present geometric criteria for a feasible point that satisfies the Kuhn-Tucker conditions to be a global minimizer of mathematical programming problems with or without bounds on the variables. The criteria apply to multi-extremal programming problems which may have several local minimizers that are not global. We establish such criteria in terms of underestimators of the Lagrangian of the problem. The underestimators are required to satisfy certain geometric property such as the convexity (or a generalized convexity) property. We show that the biconjugate of the Lagrangian can be chosen as a convex underestimator whenever the biconjugate coincides with the Lagrangian at a point. We also show how suitable underestimators can be constructed for the Lagrangian in the case where the problem has bounds on the variables. Examples are given to illustrate our results.
Keywords: Mathematical; programming; problems; Sufficient; optimality; conditions; Multi-extremal; problems; Bounds; on; the; variables; Generalized; convexity; Underestimators (search for similar items in EconPapers)
Date: 2009
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(07)01208-8
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:194:y:2009:i:2:p:363-367
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().