Evolutionary Pareto optimizers for continuous review stochastic inventory systems
Ching-Shih Tsou
European Journal of Operational Research, 2009, vol. 195, issue 2, 364-371
Abstract:
Multi-objective inventory control has been studied for a long time. The trade-off analysis of cycle stock investment and workload, so called the exchange curve concept, possibly dates back to several decades ago. A classical way to such trade-off analysis is to utilize the Lagrangian relaxation technique or interactive method to search for the optimum in a sequence of single objective optimization problems. However, the field of optimization has been changed over the last few decades since the concept of evolutionary computation was introduced. In this paper, a continuous review stochastic inventory system with three objectives about cost and shortage is resolved by evolutionary computation in order to plan for the control policies under backordering and lost sales. Two evolutionary optimizers, multi-objective electromagnetism-like optimization (MOEMO) and multi-objective particle swarm optimization (MOPSO), are employed to well and fast approximate the non-dominated policies in term of lot size and safety stock. Trade-offs are observed in a non-dominated set that no one excels the others in all objectives. Computational results show that the evolutionary Pareto optimizers could generate trade-off solutions potentially ignored by the well-known simultaneous method. Comparisons between the results of backordering and lost sales indicate that decision makers will make more deliberate choices about lot sizing and safety stocking when unsatisfied demand is completely lost.
Keywords: Inventory; control; Evolutionary; computation; Multi-objective; optimization (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(08)00235-X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:195:y:2009:i:2:p:364-371
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().