EconPapers    
Economics at your fingertips  
 

Hybrid genetic algorithm for permutation flowshop scheduling problems with total flowtime minimization

Yi Zhang, Xiaoping Li and Qian Wang

European Journal of Operational Research, 2009, vol. 196, issue 3, 869-876

Abstract: In this paper, a HGA (hybrid genetic algorithm) is proposed for permutation flowshop scheduling problems (PFSP) with total flowtime minimization, which are known to be NP-hard. One of the chromosomes in the initial population is constructed by a suitable heuristic and the others are yielded randomly. An artificial chromosome is generated by a weighted simple mining gene structure, with which a new crossover operator is presented. Additionally, two effective heuristics are adopted as local search to improve all generated chromosomes in each generation. The HGA is compared with one of the most effective heuristics and a recent meta-heuristic on 120 benchmark instances. Experimental results show that the HGA outperforms the other two algorithms for all cases. Furthermore, HGA obtains 115 best solutions for the benchmark instances, 92 of which are newly discovered.

Keywords: Genetic; algorithm; Permutation; flowshop; Total; flowtime; Scheduling (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(08)00392-5
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:196:y:2009:i:3:p:869-876

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:196:y:2009:i:3:p:869-876