EconPapers    
Economics at your fingertips  
 

Hybridizing principles of the Electre method with case-based reasoning for data mining: Electre-CBR-I and Electre-CBR-II

Hui Li and Jie Sun

European Journal of Operational Research, 2009, vol. 197, issue 1, 214-224

Abstract: Electre is an important outranking method developed in the area of decision-aiding. Data mining is a vital developing technique that receives contributions from lots of disciplines such as databases, machine learning, information retrieval, statistics, and so on. Techniques in outranking approaches, e.g. Electre, could also contribute to the development of data mining. In this research, we address the following two issues: a) why and how to combine Electre with case-based reasoning (CBR) to generate corresponding hybrid models by extending the fundamental principles of Electre into CBR; b) the effect on predictive performance by employing evidence vetoing the assertion on the base of evidence supporting the assertion. The similarity measure of CBR is implemented by revising and fulfilling three basic ideas of Electre, i.e. assertion that two cases are indifferent, evidence supporting the assertion, and evidence vetoing the assertion. Two corresponding CBR models are constructed by combining principles of the Electre decision-aiding method with CBR. The first one, named Electre-CBR-I, derives from evidence supporting the assertion. The other one, named Electre-CBR-II, derives from both evidence supporting and evidence vetoing the assertion. Leave-one-out cross-validation and hold-out method are integrated to form 30-times hold-out method. In financial distress mining, data was collected from Shanghai and Shenzhen Stock Exchanges, ANOVA was employed to select features that are significantly different between companies in distress and health, 30-times hold-out method was used to assess predictive performance, and grid-search technique was utilized to search optimal parameters. Original data distributions were kept in the experiment. Empirical results of long-term financial distress prediction with 30 initial financial ratios and 135 initial pairs of samples indicate that Electre-CBR-I outperforms Electre-CBR-II and other comparative CBR models, and Electre-CBR-II outperforms the other comparative CBR models.

Keywords: Data; mining; Electre; Case-based; reasoning; 30-times; hold-out; method; Financial; distress; prediction (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(08)00452-9
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:197:y:2009:i:1:p:214-224

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:197:y:2009:i:1:p:214-224