The stochastic trim-loss problem
P. Beraldi,
M.E. Bruni and
D. Conforti
European Journal of Operational Research, 2009, vol. 197, issue 1, 42-49
Abstract:
The cutting stock problem (CSP) is one of the most fascinating problems in operations research. The problem aims at determining the optimal plan to cut a number of parts of various length from an inventory of standard-size material so to satisfy the customers demands. The deterministic CSP ignores the uncertain nature of the demands thus typically providing recommendations that may result in overproduction or in profit loss. This paper proposes a stochastic version of the CSP which explicitly takes into account uncertainty. Using a scenario-based approach, we develop a two-stage stochastic programming formulation. The highly non-convex nature of the model together with its huge size prevent the application of standard software. We use a solution approach designed to exploit the specific problem structure. Encouraging preliminary computational results are provided.
Keywords: Stochastic; programming; Trim-loss; problem; Branch; and; bound (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(08)00419-0
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:197:y:2009:i:1:p:42-49
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().