Capturing incomplete information in resource allocation problems through numerical patterns
Arun Marar and
Warren B. Powell
European Journal of Operational Research, 2009, vol. 197, issue 1, 50-58
Abstract:
We look at the problem of optimizing complex operations with incomplete information where the missing information is revealed indirectly and imperfectly through historical decisions. Incomplete information is characterized by missing data elements governing operational behavior and unknown cost parameters. We assume some of this information may be indirectly captured in historical databases through flows characterizing resource movements. We can use these flows or other quantities derived from these flows as "numerical patterns" in our optimization model to reflect some of the incomplete information. We develop our methodology for representing information in resource allocation models using the concept of pattern regression. We use a popular goodness-of-fit measure known as the Cramer-Von Mises metric as the foundation of our approach. We then use a hybrid approach of solving a cost model with a term known as the "pattern metric" that minimizes the deviations of model decisions from observed quantities in a historical database. We present a novel iterative method to solve this problem. Results with real-world data from a large freight railroad are presented.
Keywords: Combinatorial; optimization; Decision; support; systems; Knowledge-based; systems; Large; scale; optimization; Logistics (search for similar items in EconPapers)
Date: 2009
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(08)00467-0
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:197:y:2009:i:1:p:50-58
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().