Data preparation using data quality matrices for classification mining
Ian Davidson and
Giri Tayi
European Journal of Operational Research, 2009, vol. 197, issue 2, 764-772
Abstract:
Data mining aims to find patterns in organizational databases. However, most techniques in mining do not consider knowledge of the quality of the database. In this work, we show how to incorporate into classification mining recent advances in the data quality field that view a database as the product of an imprecise manufacturing process where the flaws/defects are captured in quality matrices. We develop a general purpose method of incorporating data quality matrices into the data mining classification task. Our work differs from existing data preparation techniques since while other approaches detect and fix errors to ensure consistency with the entire data set our work makes use of the apriori knowledge of how the data is produced/manufactured.
Keywords: Data; manufacturing; Data; quality; Data; preparation; Application; of; data; mining (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(08)00560-2
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:197:y:2009:i:2:p:764-772
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().