Symmetric AC fuzzy power flow model
Eduardo M. Gouveia and
Manuel A. Matos
European Journal of Operational Research, 2009, vol. 197, issue 3, 1012-1018
Abstract:
Power flow calculations are one of the most important computational tools for planning and operating electric power systems. After the stabilization of the deterministic power flow calculation methods, the need to capture uncertainty in load definition lead first to the development of probabilistic models, and later to fuzzy approaches able to deal with qualitative declarations and other non-probabilistic information about the value of the loads. Present fuzzy power flow (FPF) calculations use typically incremental techniques, in order to obtain a good approximation of the fuzzy state variables. However, these models and procedures are not entirely satisfactory for the evaluation of the adequacy of the electric transmission system, since they are not completely symmetric. In this paper, we show how to perform the detailed calculation of the state variables of the FPF problem in an exact and symmetrical way, by means of solving multiple optimization problems. The procedure is illustrated using the IEEE 118 test system.
Keywords: Linear; programming; Nonlinear; programming; Power; flow; Fuzzy; models; Optimization (search for similar items in EconPapers)
Date: 2009
References: View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(08)00272-5
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:197:y:2009:i:3:p:1012-1018
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().