Solving stochastic complementarity problems in energy market modeling using scenario reduction
Steven A. Gabriel,
Jifang Zhuang and
Rudolf Egging-Bratseth
European Journal of Operational Research, 2009, vol. 197, issue 3, 1028-1040
Abstract:
In this paper, we analyze market equilibrium models with random aspects that lead to stochastic complementarity problems. While the models presented depict energy markets, the results are believed to be applicable to more general stochastic complementarity problems. The contribution is the development of new heuristic, scenario reduction approaches that iteratively work towards solving the full, extensive form, stochastic market model. The methods are tested on three representative models and supporting numerical results are provided as well as derived mathematical bounds.
Keywords: Stochastic; programming; Complementarity; problems; Scenario; reduction (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (30)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(08)00274-9
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:197:y:2009:i:3:p:1028-1040
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().