A robust approach based on conditional value-at-risk measure to statistical learning problems
Akiko Takeda and
Takafumi Kanamori
European Journal of Operational Research, 2009, vol. 198, issue 1, 287-296
Abstract:
In statistical learning problems, measurement errors in the observed data degrade the reliability of estimation. There exist several approaches to handle those uncertainties in observations. In this paper, we propose to use the conditional value-at-risk (CVaR) measure in order to depress influence of measurement errors, and investigate the relation between the resulting CVaR minimization problems and some existing approaches in the same framework. For the CVaR minimization problems which include the computation of integration, we apply Monte Carlo sampling method and obtain their approximate solutions. The approximation error bound and convergence property of the solution are proved by Vapnik and Chervonenkis theory. Numerical experiments show that the CVaR minimization problem can achieve fairly good estimation results, compared with several support vector machines, in the presence of measurement errors.
Keywords: Data; mining; Uncertainty; modelling; Stochastic; programming; Conditional; value-at-risk; Support; vector; machine (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(08)00561-4
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:198:y:2009:i:1:p:287-296
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().