EconPapers    
Economics at your fingertips  
 

The tricriterion shortest path problem with at least two bottleneck objective functions

Leizer de Lima Pinto, Cláudio Thomás Bornstein and Nelson Maculan

European Journal of Operational Research, 2009, vol. 198, issue 2, 387-391

Abstract: The focus of this paper is on the tricriterion shortest path problem where two objective functions are of the bottleneck type, for example MinMax or MaxMin. The third objective function may be of the same kind or we may consider, for example, MinSum or MaxProd. Let p(n) be the complexity of a classical single objective algorithm responsible for this third function, where n is the number of nodes and m be the number of arcs of the graph. An O(m2p(n)) algorithm is presented that can generate the minimal complete set of Pareto-optimal solutions. Finding the maximal complete set is also possible. Optimality proofs are given and extensions for several special cases are presented. Computational experience for a set of randomly generated problems is reported.

Keywords: Multicriteria; shortest; path; problem; Pareto-optimal; solution (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(08)00771-6
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:198:y:2009:i:2:p:387-391

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:198:y:2009:i:2:p:387-391