Testing procedures for detection of linear dependencies in efficiency models
Antonio Peyrache and
Timothy Coelli
European Journal of Operational Research, 2009, vol. 198, issue 2, 647-654
Abstract:
The validity of many efficiency measurement methods rely upon the assumption that variables such as input quantities and output mixes are independent of (or uncorrelated with) technical efficiency, however few studies have attempted to test these assumptions. In a recent paper, Wilson (2003) investigates a number of independence tests and finds that they have poor size properties and low power in moderate sample sizes. In this study we discuss the implications of these assumptions in three situations: (i) bootstrapping non-parametric efficiency models; (ii) estimating stochastic frontier models and (iii) obtaining aggregate measures of industry efficiency. We propose a semi-parametric Hausmann-type asymptotic test for linear independence (uncorrelation), and use a Monte Carlo experiment to show that it has good size and power properties in finite samples. We also describe how the test can be generalized in order to detect higher order dependencies, such as heteroscedasticity, so that the test can be used to test for (full) independence when the efficiency distribution has a finite number of moments. Finally, an empirical illustration is provided using data on US electric power generation.
Keywords: Data; envelopment; analysis; Correlation; Independence; Hypothesis; test; Aggregation (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(08)00732-7
Full text for ScienceDirect subscribers only
Related works:
Working Paper: Testing procedures for detection of linear dependencies in efficiency models (2008) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:198:y:2009:i:2:p:647-654
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().