EconPapers    
Economics at your fingertips  
 

Asymptotic formulas for the derivatives of probability functions and their Monte Carlo estimations

Josselin Garnier, Abdennebi Omrane and Youssef Rouchdy

European Journal of Operational Research, 2009, vol. 198, issue 3, 848-858

Abstract: One of the key problems in chance constrained programming for nonlinear optimization problems is the evaluation of derivatives of joint probability functions of the form . Here is the vector of physical parameters, is a random vector describing the uncertainty of the model, is the constraints mapping, and is the vector of constraint levels. In this paper specific Monte Carlo tools for the estimations of the gradient and Hessian of P(x) are proposed when the input random vector [Lambda] has a multivariate normal distribution and small variances. Using the small variance hypothesis, approximate expressions for the first- and second-order derivatives are obtained, whose Monte Carlo estimations have low computational costs. The number of calls of the constraints mapping g for the proposed estimators of the gradient and Hessian of P(x) is only 1+2Nx+2N[Lambda]. These tools are implemented in penalized optimization routines adapted to stochastic optimization, and are shown to reduce the computational cost of chance constrained programming substantially.

Keywords: Applied; probability; Monte; Carlo; methods; Stochastic; programming; Optimization; with; constraints; Random; constraints (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(08)00799-6
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:198:y:2009:i:3:p:848-858

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:198:y:2009:i:3:p:848-858