Simulation optimization for an emergency department healthcare unit in Kuwait
Mohamed A. Ahmed and
Talal M. Alkhamis
European Journal of Operational Research, 2009, vol. 198, issue 3, 936-942
Abstract:
This paper integrates simulation with optimization to design a decision support tool for the operation of an emergency department unit at a governmental hospital in Kuwait. The hospital provides a set of services for different categories of patients. We present a methodology that uses system simulation combined with optimization to determine the optimal number of doctors, lab technicians and nurses required to maximize patient throughput and to reduce patient time in the system subject to budget restrictions. The major objective of this decision supporting tool is to evaluate the impact of various staffing levels on service efficiency. Experimental results show that by using current hospital resources, the optimization simulation model generates optimal staffing allocation that would allow 28% increase in patient throughput and an average of 40% reduction in patients' waiting time.
Keywords: Health; services; Stochastic; optimization; Simulation; Decision; support; system (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (43)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(08)00960-0
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:198:y:2009:i:3:p:936-942
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().