Calculation of delay characteristics for multiserver queues with constant service times
Peixia Gao,
Sabine Wittevrongel,
Joris Walraevens,
Marc Moeneclaey and
Herwig Bruneel
European Journal of Operational Research, 2009, vol. 199, issue 1, 170-175
Abstract:
We consider a discrete-time infinite-capacity queueing system with a general uncorrelated arrival process, constant-length service times of multiple slots, multiple servers and a first-come-first-served queueing discipline. Under the assumption that the queueing system can reach a steady state, we first establish a relationship between the steady-state probability distributions of the system content and the customer delay. Next, by means of this relationship, an explicit expression for the probability generating function of the customer delay is obtained from the known generating function of the system content, derived in previous work. In addition, several characteristics of the customer delay, namely the mean value, the variance and the tail distribution of the delay, are derived through some mathematical manipulations. The analysis is illustrated by means of some numerical examples.
Keywords: Queueing; Discrete; time; Multiple; servers; Constant; service; times; Delay; analysis (search for similar items in EconPapers)
Date: 2009
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(08)00954-5
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:199:y:2009:i:1:p:170-175
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().