Improving benders decomposition using a genetic algorithm
C.A. Poojari and
John Beasley
European Journal of Operational Research, 2009, vol. 199, issue 1, 89-97
Abstract:
We develop and investigate the performance of a hybrid solution framework for solving mixed-integer linear programming problems. Benders decomposition and a genetic algorithm are combined to develop a framework to compute feasible solutions. We decompose the problem into a master problem and a subproblem. A genetic algorithm along with a heuristic are used to obtain feasible solutions to the master problem, whereas the subproblem is solved to optimality using a linear programming solver. Over successive iterations the master problem is refined by adding cutting planes that are implied by the subproblem. We compare the performance of the approach against a standard Benders decomposition approach as well as against a stand-alone solver (Cplex) on MIPLIB test problems.
Keywords: Genetic; algorithm; Benders; decomposition; Mixed-integer; linear; programs (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (23)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(08)00974-0
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:199:y:2009:i:1:p:89-97
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().