EconPapers    
Economics at your fingertips  
 

New variants of pairwise classification

Miroslaw Krzysko and Waldemar Wolynski

European Journal of Operational Research, 2009, vol. 199, issue 2, 512-519

Abstract: Pairwise classification is the technique that deals with multi-class problems by converting them into a series of binary problems, one for each pair of classes. Typically, K-class classification rules tend to be easier to learn for KÂ =Â 2 than for KÂ >Â 2 - only one decision boundary requires attention. This paper presents new methods for obtaining class membership probability estimates for multi-class classification problems by coupling the probability estimates created by binary classifiers. Classifiers used include linear Bayes normal classifier, Parzen density based classifier, naive Bayes classifier, binary decision tree classifier and random neural net classifier. The accuracy of new pairwise classifiers is examined on some real data sets. The classification errors were estimated by stratified version of 10-fold cross-validation technique, i.e. the training examples were partitioned into 10 equal-sized blocks with similar class distributions as in the original set. The validation technique was repeated 10 times for each data set.

Keywords: Classification; by; pairwise; coupling; Multi-class; classifiers; Binary; classifiers (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(08)00975-2
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:199:y:2009:i:2:p:512-519

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:199:y:2009:i:2:p:512-519