Heuristics for the 0-1 multidimensional knapsack problem
V. Boyer,
M. Elkihel and
D. El Baz
European Journal of Operational Research, 2009, vol. 199, issue 3, 658-664
Abstract:
Two heuristics for the 0-1 multidimensional knapsack problem (MKP) are presented. The first one uses surrogate relaxation, and the relaxed problem is solved via a modified dynamic-programming algorithm. The heuristics provides a feasible solution for (MKP). The second one combines a limited-branch-and-cut-procedure with the previous approach, and tries to improve the bound obtained by exploring some nodes that have been rejected by the modified dynamic-programming algorithm. Computational experiences show that our approaches give better results than the existing heuristics, and thus permit one to obtain a smaller gap between the solution provided and an optimal solution.
Keywords: Multidimensional; knapsack; problem; Dynamic-programming; Branch-and-cut; Surrogate; relaxation; Heuristics (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(08)00363-9
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:199:y:2009:i:3:p:658-664
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().