A branch and bound algorithm for the maximum diversity problem
Rafael Martí,
Micael Gallego and
Abraham Duarte
European Journal of Operational Research, 2010, vol. 200, issue 1, 36-44
Abstract:
This article begins with a review of previously proposed integer formulations for the maximum diversity problem (MDP). This problem consists of selecting a subset of elements from a larger set in such a way that the sum of the distances between the chosen elements is maximized. We propose a branch and bound algorithm and develop several upper bounds on the objective function values of partial solutions to the MDP. Empirical results with a collection of previously reported instances indicate that the proposed algorithm is able to solve all the medium-sized instances (with 50 elements) as well as some large-sized instances (with 100 elements). We compare our method with the best previous linear integer formulation solved with the well-known software Cplex. The comparison favors the proposed procedure.
Keywords: Maximum; diversity; problem; Branch; and; bound; Integer; programming (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(08)01061-8
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:200:y:2010:i:1:p:36-44
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().