Mining Pareto-optimal modules for delayed product differentiation
Zhe Song and
Andrew Kusiak
European Journal of Operational Research, 2010, vol. 201, issue 1, 123-128
Abstract:
This paper presents a framework for finding optimal modules in a delayed product differentiation scenario. Historical product sales data is utilized to estimate demand probability and customer preferences. Then this information is used by a multiple-objective optimization model to form modules. An evolutionary computation approach is applied to solve the optimization model and find the Pareto-optimal solutions. An industrial case study illustrates the ideas presented in the paper. The mean number of assembly operations and expected pre-assembly costs are the two competing objectives that are optimized in the case study. The mean number of assembly operations can be significantly reduced while incurring relatively small increases in the expected pre-assembly cost.
Keywords: Data; mining; Evolutionary; computations; Mass; customization; Modularity; Delayed; product; differentiation; Multi-objective; optimization (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(09)00107-6
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:201:y:2010:i:1:p:123-128
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().