Extending pricing rules with general risk functions
Alejandro Balbás,
Raquel Balbás and
José Garrido
European Journal of Operational Research, 2010, vol. 201, issue 1, 23-33
Abstract:
The paper addresses pricing issues in imperfect and/or incomplete markets if the risk level of the hedging strategy is measured by a general risk function. Convex Optimization Theory is used in order to extend pricing rules for a wide family of risk functions, including Deviation Measures, Expectation Bounded Risk Measures and Coherent Measures of Risk. Necessary and sufficient optimality conditions are provided in a very general setting. For imperfect markets the extended pricing rules reduce the bid-ask spread. The findings are particularized so as to study with more detail some concrete examples, including the Conditional Value at Risk and some properties of the Standard Deviation. Applications dealing with the valuation of volatility linked derivatives are discussed.
Keywords: Incomplete; and; imperfect; market; Risk; measure; and; deviation; measure; Pricing; rule; Convex; optimization; Optimality; conditions (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(09)00076-9
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:201:y:2010:i:1:p:23-33
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().