A proximal method with separable Bregman distances for quasiconvex minimization over the nonnegative orthant
Sissy da S. Souza,
P.R. Oliveira,
J.X. da Cruz Neto and
Antoine Soubeyran
European Journal of Operational Research, 2010, vol. 201, issue 2, 365-376
Abstract:
We present an interior proximal method with Bregman distance, for solving the minimization problem with quasiconvex objective function under nonnegative constraints. The Bregman function is considered separable and zone coercive, and the zone is the interior of the positive orthant. Under the assumption that the solution set is nonempty and the objective function is continuously differentiable, we establish the well definedness of the sequence generated by our algorithm and obtain two important convergence results, and show in the main one that the sequence converges to a solution point of the problem when the regularization parameters go to zero.
Keywords: Interior; point; methods; Proximal; methods; Bregman; distances; Quasiconvex; programming (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(09)00146-5
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:201:y:2010:i:2:p:365-376
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().