Well-posedness by perturbations of mixed variational inequalities in Banach spaces
Ya-Ping Fang,
Nan-Jing Huang and
Jen-Chih Yao
European Journal of Operational Research, 2010, vol. 201, issue 3, 682-692
Abstract:
In this paper, we consider an extension of the notion of well-posedness by perturbations, introduced by Zolezzi for a minimization problem, to a mixed variational inequality problem in a Banach space. We establish some metric characterizations of the well-posedness by perturbations. We also show that under suitable conditions, the well-posedness by perturbations of a mixed variational inequality problem is equivalent to the well-posedness by perturbations of a corresponding inclusion problem and a corresponding fixed point problem. Also, we derive some conditions under which the well-posedness by perturbations of a mixed variational inequality is equivalent to the existence and uniqueness of its solution.
Keywords: Mixed; variational; inequality; Inclusion; problem; Fixed; point; problem; Well-posedness; by; perturbation; Uniqueness (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(09)00232-X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:201:y:2010:i:3:p:682-692
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().