Optimal solutions for unrelated parallel machines scheduling problems using convex quadratic reformulations
M.-C. Plateau and
Y.A. Rios-Solis
European Journal of Operational Research, 2010, vol. 201, issue 3, 729-736
Abstract:
In this work, we take advantage of the powerful quadratic programming theory to obtain optimal solutions of scheduling problems. We apply a methodology that starts, in contrast to more classical approaches, by formulating three unrelated parallel machine scheduling problems as 0-1 quadratic programs under linear constraints. By construction, these quadratic programs are non-convex. Therefore, before submitting them to a branch-and-bound procedure, we reformulate them in such a way that we can ensure convexity and a high-quality continuous lower bound. Experimental results show that this methodology is interesting by obtaining the best results in literature for two of the three studied scheduling problems.
Keywords: Scheduling; Quadratic; programming; Convex; reformulations; Parallel; machines (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(09)00224-0
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:201:y:2010:i:3:p:729-736
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().