EconPapers    
Economics at your fingertips  
 

A cooperative local search-based algorithm for the Multiple-Scenario Max-Min Knapsack Problem

Abdelkader Sbihi ()

European Journal of Operational Research, 2010, vol. 202, issue 2, 339-346

Abstract: The purpose of this article is to present a novel method to approximately solve the Multiple-Scenario Max-Min Knapsack Problem (MSM2KP). This problem models many real world situations, e.g. when for many scenarios noted , the aim is to identify the one offering a better alternative in term of maximizing the worst possible outcome. Herein is presented a cooperative approach based on two local search algorithms: (i) a limited-area local search applied in the elite neighborhood and which accepts the first solution with some deterioration threshold of the current solution, (ii) a wide range local search is applied to perform a sequence of paths exchange to improve the current solution. Results have been analyzed by means state-of-the art methods and via problem instances obtained by a generator code taken from the literature. The tests were executed in compeltely comparable scenarios to those of the literature. The results are promising and the efficiency of the proposed approach is also shown.

Keywords: Combinatorial; optimization; Knapsack; Max-Min; optimization; Robust; optimization; Heuristics; Cooperative (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(09)00386-5
Full text for ScienceDirect subscribers only

Related works:
Working Paper: A cooperative local search-based algorithm for the Multiple-Scenario Max-Min Knapsack Problem (2009) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:202:y:2010:i:2:p:339-346

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-31
Handle: RePEc:eee:ejores:v:202:y:2010:i:2:p:339-346