Worst-case analysis of demand point aggregation for the Euclidean p-median problem
Lian Qi and
Zuo-Jun Max Shen
European Journal of Operational Research, 2010, vol. 202, issue 2, 434-443
Abstract:
Solving large-scale p-median problems is usually time consuming. People often aggregate the demand points in a large-scale p-median problem to reduce its problem size and make it easier to solve. Most traditional research on demand point aggregation is either experimental or assuming uniformly distributed demand points in analytical studies. In this paper, we study demand point aggregation for planar p-median problem when demand points are arbitrarily distributed. Efficient demand aggregation approaches are proposed with the corresponding attainable worst-case aggregation error bounds measured. We demonstrate that these demand aggregation approaches introduce smaller worst-case aggregation error bounds than that of the honeycomb heuristic [Papadimitriou, C.H., 1981. Worst-case and probabilistic analysis of a geometric location problem. SIAM Journal on Computing 10, 542-557] when demand points are arbitrarily distributed. We also conduct numerical experiments to show their effectiveness.
Keywords: Aggregation; Error; bounds; p-Median (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(09)00353-1
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:202:y:2010:i:2:p:434-443
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().