Logistics network design for product recovery in fuzzy environment
Zhongfeng Qin and
Xiaoyu Ji
European Journal of Operational Research, 2010, vol. 202, issue 2, 479-490
Abstract:
The design of product recovery network is one of the important and challenging problems in the field of reverse logistics. Some models have been formatted by researchers under deterministic environment. However, uncertainty is inherent during the process of the practical product recovery. In order to deal with uncertainty, this paper employs a fuzzy programming tool to design the product recovery network. Based on different criteria, three types of optimization models are proposed and some properties of them are investigated. To solve the proposed models, we design a hybrid intelligent algorithm which integrates fuzzy simulation and genetic algorithm. Finally, several numerical examples are presented to illustrate the effectiveness of the proposed models and algorithm.
Keywords: Credibility; measure; Product; recovery; Reverse; logistics; Fuzzy; programming; Genetic; algorithm; Fuzzy; simulation (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(09)00390-7
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:202:y:2010:i:2:p:479-490
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().