Robust placement of sensors in dynamic water distribution systems
Jianhua Xu,
Michael P. Johnson,
Paul S. Fischbeck,
Mitchell J. Small and
Jeanne M. VanBriesen
European Journal of Operational Research, 2010, vol. 202, issue 3, 707-716
Abstract:
Designing a robust sensor network to detect accidental contaminants in water distribution systems is a challenge given the uncertain nature of the contamination events (what, how much, when, where and for how long) and the dynamic nature of water distribution systems (driven by the random consumption of consumers). We formulate a set of scenario-based minimax and minimax regret models in order to provide robust sensor-placement schemes that perform well under all realizable contamination scenarios, and thus protect water consumers. Single-and multi-objective versions of these models are then applied to a real water distribution system. A heuristic solution method is applied to solve the robust models. The concept of "sensitivity region" is used to visualize trade-offs between multiple objectives.
Keywords: Facilities; planning; and; design; Robust; optimization; Scenarios; Water; distribution; systems (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(09)00477-9
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:202:y:2010:i:3:p:707-716
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().