Applying Ant System for solving Unequal Area Facility Layout Problems
Komarudin and
Kuan Yew Wong
European Journal of Operational Research, 2010, vol. 202, issue 3, 730-746
Abstract:
Ant Colony Optimization (ACO) is a young metaheuristic algorithm which has shown promising results in solving many optimization problems. To date, a formal ACO-based metaheuristic has not been applied for solving Unequal Area Facility Layout Problems (UA-FLPs). This paper proposes an Ant System (AS) (one of the ACO variants) to solve them. As a discrete optimization algorithm, the proposed algorithm uses slicing tree representation to easily represent the problems without too restricting the solution space. It uses several types of local search to improve its search performance. It is then tested using several case problems with different size and setting. Overall, the proposed algorithm shows encouraging results in solving UA-FLPs.
Keywords: Facility; layout; Slicing; tree; representation; Ant; System; Metaheuristic; Unequal; Area; Facility; Layout; Problem (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(09)00483-4
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:202:y:2010:i:3:p:730-746
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().