Optimizing glass coating lines: MIP model and valid inequalities
C. Gicquel,
N. Miégeville,
M. Minoux and
Y. Dallery
European Journal of Operational Research, 2010, vol. 202, issue 3, 747-755
Abstract:
Glass coating is a specific transformation aiming at improving glass performance. The work presented in this paper deals with the determination of the optimal configuration of the production lines used to perform this operation. We propose a first MIP formulation of the problem and then discuss several types of valid inequalities for improving it. The main idea is to exploit explicit or implicit binary exclusion constraints to derive stronger valid inequalities: the maximal clique constraints. Efficient (polynomial time) separation algorithms exploiting special structure of the problem are described, giving rise to a cutting-plane generation procedure for strengthening the initial formulation. The computational study carried out shows that, with the enhanced formulation, good solutions can be obtained within reasonable computation times using currently available integer programming software.
Keywords: Integer; programming; Branch; and; bound; Valid; inequalities; Production; line; design; Glass; coating (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(09)00493-7
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:202:y:2010:i:3:p:747-755
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().