On the predictive ability of narrative disclosures in annual reports
Ramji Balakrishnan,
Xin Ying Qiu and
Padmini Srinivasan
European Journal of Operational Research, 2010, vol. 202, issue 3, 789-801
Abstract:
We investigate whether narrative disclosures in 10-K and 10K-405 filings contain value-relevant information for predicting market performance. We apply text classification techniques from computer science to machine code text disclosures in a sample of 4280 filings by 1236 firms over five years. Our methodology develops a model using documents and actual performance for a training sample. This model, when applied to documents from a test set, leads to performance prediction. We find that a portfolio based on model predictions earns significantly positive size-adjusted returns, indicating that narrative disclosures contain value-relevant information. Supplementary analyses show that the text classification model captures information not contained in document-level features of clarity, tone and risk sentiment considered in prior research. However, we find that the narrative score is not providing information incremental to traditional predictors such as size, market-to-book and momentum, but rather affects investors' use of price momentum as a factor that predicts excess returns.
Keywords: Economics; Finance; Text; mining; Capital; markets (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (30)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(09)00482-2
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:202:y:2010:i:3:p:789-801
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().