Importance functions for restart simulation of general Jackson networks
José Villén-Altamirano
European Journal of Operational Research, 2010, vol. 203, issue 1, 156-165
Abstract:
RESTART is an accelerated simulation technique that allows the evaluation of extremely low probabilities. In this method a number of simulation retrials are performed when the process enters regions of the state space where the chance of occurrence of the rare event is higher. These regions are defined by means of a function of the system state called the importance function. Guidelines for obtaining suitable importance functions and formulas for the importance function of two-stage networks were provided in previous papers. In this paper, we obtain effective importance functions for RESTART simulation of Jackson networks where the rare set is defined as the number of customers in a particular ('target') node exceeding a predefined threshold. Although some rough approximations and assumptions are used to derive the formulas of the importance functions, they are good enough to estimate accurately very low probabilities for different network topologies within short computational time.
Keywords: Simulation; Queueing; Rare; event; probabilities; RESTART (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(09)00523-2
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:203:y:2010:i:1:p:156-165
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().