Solving the 2-rooted mini-max spanning forest problem by branch-and-bound
M. Mekking and
A. Volgenant
European Journal of Operational Research, 2010, vol. 203, issue 1, 50-58
Abstract:
The 2-rooted mini-max spanning forest problem is to find a spanning forest with two given root nodes on an undirected graph, such that the maximum tree cost in this forest is minimized. We introduce a branch-and-bound algorithm based on selecting nodes. On test instances up to 50 nodes the algorithm gives much better computational results than a known algorithm that is based on selecting edges. Furthermore the new algorithm can easily solve problem instances up to 80 nodes. We consider some alternative and polynomial criteria. Finally we discuss some generalizations, e.g., the problem without given root nodes, i.e., the root nodes have to be chosen.
Keywords: Combinatorial; optimization; Branch-and-bound; Spanning; forest; Bottleneck; criterion (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(09)00525-6
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:203:y:2010:i:1:p:50-58
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().