Learning the optimal kernel for Fisher discriminant analysis via second order cone programming
Reshma Khemchandani,
Jayadeva and
Suresh Chandra
European Journal of Operational Research, 2010, vol. 203, issue 3, 692-697
Abstract:
Kernel Fisher discriminant analysis (KFDA) is a popular classification technique which requires the user to predefine an appropriate kernel. Since the performance of KFDA depends on the choice of the kernel, the problem of kernel selection becomes very important. In this paper we treat the kernel selection problem as an optimization problem over the convex set of finitely many basic kernels, and formulate it as a second order cone programming (SOCP) problem. This formulation seems to be promising because the resulting SOCP can be efficiently solved by employing interior point methods. The efficacy of the optimal kernel, selected from a given convex set of basic kernels, is demonstrated on UCI machine learning benchmark datasets.
Keywords: Fisher; discriminant; analysis; Kernel; methods; Machine; learning; Kernel; optimization; Support; vector; machines; Convex; optimization; Second; order; cone; programming; Semidefinite; programming (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(09)00635-3
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:203:y:2010:i:3:p:692-697
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().