Income prediction in the agrarian sector using product unit neural networks
Carlos R. García-Alonso,
Mercedes Torres-Jiménez and
César Hervás-Martínez
European Journal of Operational Research, 2010, vol. 204, issue 2, 355-365
Abstract:
European Union financial subsidies in the agrarian sector are directly related to maintaining a sustainable farm income, so its determination using, for example, the farm gross margin is a basic element in agrarian programs for sustainable development. Using this tool, it is possible the identification of the agrarian structures that need financial support and to what extent it is needed. However, the process of farm gross margin determination is complicated and expensive because it is necessary to find the value of all the inputs consumed and outputs produced. Considering the circumstances mentioned, the objectives of this research were to: (1) select a representative and reduced set of easy-to-collect descriptive variables to estimate the gross margin of a group of olive-tree farms in Andalusia; (2) investigate if artificial neural network models (ANN) with two different types of basis functions (sigmoidal and product-units) could effectively predict the gross margin of olive-tree farms; (3) compare the effectiveness of multiple linear, quadratic and robust regression models versus ANN; and (4) validate the best mathematical model obtained for gross margin prediction by analysing realistic farm and farmer scenarios. Results from ANN models, specially the product-unit ones, have provided the most accurate gross margin predictions.
Keywords: Neural; networks; OR; in; agriculture; Product-unit; models; Regression (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(09)00672-9
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:204:y:2010:i:2:p:355-365
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().