Neural network metamodeling for cycle time-throughput profiles in manufacturing
Feng Yang
European Journal of Operational Research, 2010, vol. 205, issue 1, 172-185
Abstract:
This paper proposed a neural network (NN) metamodeling method to generate the cycle time (CT)-throughput (TH) profiles for single/multi-product manufacturing environments. Such CT-TH profiles illustrate the trade-off relationship between CT and TH, the two critical performance measures, and hence provide a comprehensive performance evaluation of a manufacturing system. The proposed methods distinct from the existing NN metamodeling work in three major aspects: First, instead of treating an NN as a black box, the geometry of NN is examined and utilized; second, a progressive model-fitting strategy is developed to obtain the simplest-structured NN that is adequate to capture the CT-TH relationship; third, an experiment design method, particularly suitable to NN modeling, is developed to sequentially collect simulation data for the efficient estimation of the NN models.
Keywords: Discrete; event; simulation; Response; surface; modeling; Design; of; experiments; Neural; networks; Semiconductor; manufacturing; Queueing (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(10)00006-8
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:205:y:2010:i:1:p:172-185
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().