EconPapers    
Economics at your fingertips  
 

An ensemble method using credal decision trees

Joaquín Abellán and Andrés R. Masegosa

European Journal of Operational Research, 2010, vol. 205, issue 1, 218-226

Abstract: Supervised classification learning can be considered as an important tool for decision support. In this paper, we present a method for supervised classification learning, which ensembles decision trees obtained via convex sets of probability distributions (also called credal sets) and uncertainty measures. Our method forces the use of different decision trees and it has mainly the following characteristics: it obtains a good percentage of correct classifications and an improvement in time of processing compared with known classification methods; it not needs to fix the number of decision trees to be used; and it can be parallelized to apply it on very large data sets.

Keywords: Imprecise; probabilities; Credal; sets; Imprecise; Dirichlet; model; Uncertainty; measures; Supervised; classification; Decision; trees (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(09)00911-4
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:205:y:2010:i:1:p:218-226

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:205:y:2010:i:1:p:218-226