EconPapers    
Economics at your fingertips  
 

Generalized linear fractional programming under interval uncertainty

Milan Hladík

European Journal of Operational Research, 2010, vol. 205, issue 1, 42-46

Abstract: Data in many real-life engineering and economical problems suffer from inexactness. Herein we assume that we are given some intervals in which the data can simultaneously and independently perturb. We consider a generalized linear fractional programming problem with interval data and present an efficient method for computing the range of optimal values. The method reduces the problem to solving from two to four real-valued generalized linear fractional programs, which can be computed in polynomial time using an appropriate interior point method solver. We consider also the inverse problem: How much can data of a real generalized linear fractional program vary such that the optimal values do not exceed some prescribed bounds. We propose a method for calculating (often the largest possible) ranges of admissible variations; it needs to solve only two real-valued generalized linear fractional programs. We illustrate the approach on a simple von Neumann economic growth model.

Keywords: Generalized; linear; fractional; programming; Interval; analysis; Tolerance; analysis; Sensitivity; analysis; Economic; growth; model (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(10)00026-3
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:205:y:2010:i:1:p:42-46

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:205:y:2010:i:1:p:42-46