On competitive sequential location in a network with a decreasing demand intensity
Daniel Granot,
Frieda Granot and
Tal Raviv
European Journal of Operational Research, 2010, vol. 205, issue 2, 301-312
Abstract:
We introduce and analyze a Hotelling like game wherein players can locate in a city, at a fixed cost, according to an exogenously given order. Demand intensity is assumed to be strictly decreasing in distance and players locate in the city as long as it is profitable for them to do so. For a linear city (i) we explicitly determine the number of players who will locate in equilibrium, (ii) we fully characterize and compute the unique family of equilibrium locations, and (iii) we show that players' equilibrium expected profits decline in their position in the order. Our results are then extended to a city represented by an undirected weighted graph whose edge lengths are not too small and co-location on nodes of the graph is not permitted. Further, we compare the equilibrium outcomes with the optimal policy of a monopolist who faces an identical problem and who needs to decide upon the number of stores to open and their locations in the city so as to maximize total profit.
Keywords: Location; Game; theory (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(09)00949-7
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:205:y:2010:i:2:p:301-312
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().