EconPapers    
Economics at your fingertips  
 

Optimally maintaining a Markovian deteriorating system with limited imperfect repairs

Murat Kurt and Jeffrey P. Kharoufeh

European Journal of Operational Research, 2010, vol. 205, issue 2, 368-380

Abstract: We consider the problem of optimally maintaining a periodically inspected system that deteriorates according to a discrete-time Markov process and has a limit on the number of repairs that can be performed before it must be replaced. After each inspection, a decision maker must decide whether to repair the system, replace it with a new one, or leave it operating until the next inspection, where each repair makes the system more susceptible to future deterioration. If the system is found to be failed at an inspection, then it must be either repaired or replaced with a new one at an additional penalty cost. The objective is to minimize the total expected discounted cost due to operation, inspection, maintenance, replacement and failure. We formulate an infinite-horizon Markov decision process model and derive key structural properties of the resulting optimal cost function that are sufficient to establish the existence of an optimal threshold-type policy with respect to the system's deterioration level and cumulative number of repairs. We also explore the sensitivity of the optimal policy to inspection, repair and replacement costs. Numerical examples are presented to illustrate the structure and the sensitivity of the optimal policy.

Keywords: Reliability; Limited; repairs; Threshold-type; policy; Markov; decision; processes (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(10)00017-2
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:205:y:2010:i:2:p:368-380

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:205:y:2010:i:2:p:368-380