EconPapers    
Economics at your fingertips  
 

Surrogate constraint normalization for the set covering problem

José H. Ablanedo-Rosas and César Rego

European Journal of Operational Research, 2010, vol. 205, issue 3, 540-551

Abstract: The set covering problem (SCP) is central in a wide variety of practical applications for which finding good feasible solutions quickly (often in real-time) is crucial. Surrogate constraint normalization is a classical technique used to derive appropriate weights for surrogate constraint relaxations in mathematical programming. This framework remains the core of the most effective constructive heuristics for the solution of the SCP chiefly represented by the widely-used Chvátal method. This paper introduces a number of normalization rules and demonstrates their superiority to the classical Chvátal rule, especially when solving large scale and real-world instances. Directions for new advances on the creation of more elaborate normalization rules for surrogate heuristics are also provided.

Keywords: Surrogate; constraints; Constraint; normalization; Set; covering; problem; Greedy; knapsack; heuristic; Heuristics (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(10)00113-X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:205:y:2010:i:3:p:540-551

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:205:y:2010:i:3:p:540-551