Rough support vector regression
P. Lingras and
C.J. Butz
European Journal of Operational Research, 2010, vol. 206, issue 2, 445-455
Abstract:
This paper describes the relationship between support vector regression (SVR) and rough (or interval) patterns. SVR is the prediction component of the support vector techniques. Rough patterns are based on the notion of rough values, which consist of upper and lower bounds, and are used to effectively represent a range of variable values. Predictions of rough values in a variety of different forms within the context of interval algebra and fuzzy theory are attracting research interest. An extension of SVR, called rough support vector regression (RSVR), is proposed to improve the modeling of rough patterns. In particular, it is argued that the upper and lower bounds should be modeled separately. The proposal is shown to be a more flexible version of lower possibilistic regression model using [epsilon]-insensitivity. Experimental results on the Dow Jones Industrial Average demonstrate the suggested RSVR modeling technique.
Keywords: Rough; set; Rough; value; Support; vector; machine; Prediction; Possiblistic; regression; Support; vector; regression (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(09)00791-7
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:206:y:2010:i:2:p:445-455
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().