Determining sources of relative inefficiency in heterogeneous samples: Methodology using Cluster Analysis, DEA and Neural Networks
Sergey Samoilenko and
Kweku-Muata Osei-Bryson
European Journal of Operational Research, 2010, vol. 206, issue 2, 479-487
Abstract:
Data Envelopment Analysis (DEA) is a powerful data analytic tool that is widely used by researchers and practitioners alike to assess relative performance of Decision Making Units (DMU). Commonly, the difference in the scores of relative performance of DMUs in the sample is considered to reflect their differences in the efficiency of conversion of inputs into outputs. In the presence of scale heterogeneity, however, the source of the difference in scores becomes less clear, for it is also possible that the difference in scores is caused by heterogeneity of the levels of inputs and outputs of DMUs in the sample. By augmenting DEA with Cluster Analysis (CA) and Neural Networks (NN), we propose a five-step methodology allowing an investigator to determine whether the difference in the scores of scale heterogeneous DMUs is due to the heterogeneity of the levels of inputs and outputs, or whether it is caused by their efficiency of conversion of inputs into outputs. An illustrative example demonstrates the application of the proposed methodology in action.
Keywords: Relative; efficiency; Data; Envelopment; Analysis; Neural; Networks; Cluster; Analysis; Heterogeneous; sample (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(10)00122-0
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:206:y:2010:i:2:p:479-487
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().