Analysis and design of sequencing rules for car sequencing
Uli Golle,
Nils Boysen and
Franz Rothlauf
European Journal of Operational Research, 2010, vol. 206, issue 3, 579-585
Abstract:
This paper presents novel approaches for generating sequencing rules for the car sequencing (CS) problem in cases of two and multiple processing times per station. The CS problem decides on the succession of different car models launched down a mixed-model assembly line. It aims to avoid work overloads at the stations of the line by applying so-called sequencing rules, which restrict the maximum occurrence of labor-intensive options in a subsequence of a certain length. Thus to successfully avoid work overloads, suitable sequencing rules are essential. The paper shows that the only existing rule generation approach leads to sequencing rules which misclassify feasible sequences. We present a novel procedure which overcomes this drawback by generating multiple sequencing rules. Then, it is shown how to apply both procedures in case of multiple processing times per station. For both cases analytical and empirical results are derived to compare classification quality.
Keywords: Mixed-model; assembly; lines; Car; sequencing; Sequencing; rules (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(10)00218-3
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:206:y:2010:i:3:p:579-585
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().